Quantum electrodynamics in 1D

$$Z = \sqrt{L/C} \approx \sqrt{\mu_0/\epsilon_0} = Z_{\text{vacuum}} \approx 377 \ \Omega$$

$$R_Q = h/(2e)^2 \approx 6.5 \ k\Omega$$

$$Z_{\text{vacuum}}/R_Q = 8\alpha, \alpha = 1/137.0$$

 $Z_{\rm coax} \approx 50 \ \Omega$

(teflon and factors ~ 1)

Want fine structure constant >1? Sure. Just make $Z > 8R_Q!$

Theory: BKT-type superconductorinsulator transition (SIT)

Long-wavelength limit:

$$H = \sum_{j} \frac{E_g}{2} n_j^2 - \sum_{j} E_J \cos(\varphi_j - \varphi_{j-1})$$

Equivalent to Superfluid - Mott insulator transition

Quantum fluctuations do not allow $Z > Rq/4 \sim 1.5$ kOhm!

Bradley, R. M., & Doniach, S. (1984); Korshunov, S. E. (1989)

Superconductor-Insulator Transition in disordered Josephson junction chains

M. Bard,¹ I. V. Protopopov,^{2,1,3} I. V. Gornyi,^{1,4,3,5} A. Shnirman,^{4,3} and A. D. Mirlin^{1,4,3,6}

Intergrain capacitance & charge disorder do not change critical impedance much

High-impedance Josephson transmission line

10 ... 15 mm

Ultra-slow microwave "light"

Measured speed of light
$$c = 2.1 \cdot 10^6 \frac{m}{sec}$$

Non-linear effects: Duffing bi-stability @ high power

I. Siddiqi et al. (2004); V. Manucharyan et al. (2007);

Frequency

Non-linear effects: dispersive mode interaction

$$\widehat{V} = -\chi_{ij}a_i^+a_ia_j^+a_j$$

Detect modes outside the measurement band by two-tone spectroscopy

N. Masluk et al. (2012)

Choose this frequency for readout

Many-body system of interacting photons

Dispersion relation: exp vs thy

(interacting) photonic crystal

low Z

high Z

(interacting) photonic crystal

So, how slow can the slow light be? how high can the wave impedance be?

area ~ $(E_J/E_C)^{1/2}$

2 um

0.3 um

Raw data: this is how superconducting response is suppressed at a finite frequency

-Superconductivity persists at x10 larger impedance than theory predicts -Something "damps" standing wave resonances

Probe Frequency, GHz

Tunable dispersion parameters

Dissipation in chains for EJ/EC >>1

Losses in wide chains depend only on the plasma frequency.

Dissipation drastically enhances for Ej/Ec < 20

Moreover, it appears that low frequencies are more damped than high frequencies at low Ej/Ec < 20. Is this how SIT looks at a finite frequency??

"SIT" at a finite frequency: summary

Aging test

Light velocity measures average Ej

Impedance test

Impedance is not the control parameter for "transition"

Length test

Length test

3000 junctions vs 30000 junctions

Sings of wave localization?

Decoherence is not affected!

Summary

Insulating phase superconducts @ finite frequencies!

Engineered artificial vacuum for 1D radiation:

Impedance > 24 kOhm Speed of light < 7.5×10^5 m/s Fine structure constant ~ 1

Interaction of microwaves with phase-slips?

Next:

Quantum simulation of non-linear Luttinger liquids