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Elastic d-manifolds in random media of N+d dimensions.:
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Part I: Directed polymer in a random potential

We consider the following energy functional

H[u(τ)] =

∫ L

0

dτ

[
m2

2
[u(τ)]

2
+ V(u(τ), τ) +

κ

2

(
∂u(τ))

∂τ

)2

− f(τ)u(τ)

]

where u(τ), τ ∈ [0, L] describes the polymer configuration trajectory, κ ≥ 0 is the
elastic energy coefficient, and f(τ) is the external (depinning) force. We may assume
the periodic/fixed ends configurations u(0) = u(L)(= 0) for simplicity.

f

τ

u

The random potential V(u(τ), τ) is chosen to be Gaussian with zero mean and with
a translationally-invariant covariance

V(u, τ)V(u′, τ ′) = δ(τ − τ ′)R(u− u′)
where we assume the symmetric functionR(u) to be at least four times differentiable
at u = 0. The notation · · · stands for the quantities averaged over the random potential.

To have a better defined problem, the polymer is considered to be confined inside a harmonic well

of curvature m2 ≥ 0, called the mass parameter, which flattens the line beyond an ’infrared’ length,

defined as

Lm :=
√

κ
m



The limit m→ 0+ is of special interest, as the system becomes critical, with a non-
trivial roughness exponent arising as long as Lm →∞.
Potential disorder induces yet another characteristic scale:

Lc :=
(

κ2

R′′′′(0)

)1/3

Larkin length.

When m → 0 and L � Lc the metastability effects due to pinning by multiple
extrema become important, inducing line roughness.

Our goal: To characterize the depinning threshold fc for m→ 0 and L→∞.

Our answer: fc ≤
√

2C |R
′′(0)|
Lc

= f∗c , with C ≈ 0.46

Numerical simulations for R(u) = σ2 cosu give f∗c ≈ 1.64fc.
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Anatoly Larkin (1932-2005)



Outline of the main results:
(i). For a given length L and a (uniform) force f(τ) = f we count all energy
functional equilibria defined as solutions of δH[u(τ)]

δu = 0. Those include minima,
saddles, and maxima. The number N (L, f) of equilibria is random, and we show
its mean value behaves asymptotically as

N (L, f) ∼ e
L

(
r− f2

2|R′′(0)|

)
as long as L→∞

We see that for f > f∗c =
√

2r|R′′(0)| the mean value 〈N (L, f)〉 is exponentially
small, hence no equilibria exists in a typical realization providing an upper bound.

(ii) In fact we consider a more general problem and show that for m > 0

N (L,m; f = 0) ∼ erL as long as L→∞
where the growth rate r is given by

r = 1
Lm
g
(
Lm
Lc

)
and the scaling function g(x) can be explicitly calculated in several limits, and is
argued to be universal.

g(x) ≈
{
Cx, x = Lm/Lc � 1, C ≈ 0.46

1
8πx

3 exp− 8
3x2, x = Lm

Lc
→ 0



Counting zeroes via Kac-Rice formula:

Mark Kac (1914-1984) and Stephen O. Rice (1907-1986)

Number N(a,b) of simple zeroes of a (smooth enough) function f(x) in x ∈ (a, b)
can be found via

N(a,b) =
∫ b
a
δ(f(x))|f ′(x)| dx



Counting equilibria for the ”discretized” model:

It is more convenient to start from a discrete version of the model, passing to the
continuous limit in the end of calculations. In this way we replace the continuous
variable τ by a discrete lattice index i = 1, . . . ,K with K = L/a (for simplicity we
choose units such that the lattice spacing is a = 1). The energy of the polymer and
the correlations of the random potential in such setting are given by

H(u) =

K∑
i=1

[
m2

2
u2
i + Vi(ui)

]
+
κ

2

K∑
i=0

(ui − ui+1)
2 (1)

Vi(u)Vj(u′) = δij R(u− u′) . (2)

Configurations of the polymer are described by vectors of transverse coordinates
uT = (u1, . . . , uK), with ui ∈ R for i = 1, 2, . . . , K. The periodic/fixed ends
condition now read u0 = uK+1(= 0). The effect of an external force field requires to
add a term −fTu =

∑K
i=1 fiui to the energy.



Counting equilibria for the ”discretized” model:

An equilibrium configuration is found as a solution of the system of K stationarity
conditions which can be conveniently written as

∂iH(u) =
[
(m2IK − κ∆)u

]
i
+ V ′i (ui) = 0 , i = 1, . . . ,K

where ∂i ≡ ∂/∂ui is the partial derivative, IK is the identity matrix of size K and ∆
is the discrete Laplacian matrix for the underlying one-dimensional lattice, with the
only non-zero entries (e.g. for fixed ends boundary conditions) being

∆i,i = −2 , i = 1, . . . ,K and ∆i,i−1 = ∆i−1,i = +1

In the continuum limit such a matrix approximates the standard one-dimensional
Laplacian operator d2

dτ2 with Dirichlet boundary conditions.

The total number of solutions NA of such equations such that u belongs to a subset
A of RK is then given by the multidimensional Kac-Rice formula:

NA =
∫
A
ρ(u)du where ρ(u) = |det (∂i∂jH)|

∏K
i=1 δ (∂iH)

with the Hessian being a K ×K matrix given explicitly by

∂i∂jH =
[
m2 + V ′′i (ui)

]
δi,j − κ∆i,j . (3)



Counting equilibria for the ”discretized” model:

NA =
∫
A
ρ(u)du where ρ(u) = |det (∂i∂jH)|

∏K
i=1 δ (∂iH)

To perform the disorder average we will use that:

(a) the potentials Vi(u) and Vj(u) are statistically independent for i 6= j
(b) the variables V ′i (u) are independent of V ′′i (u) for any i as an important
consequence of translational invariance and the Gaussian character of the random
function Vi(u).

Moreover, after taking the average the mod-Hessian factor is obviously independent
of u, and the average of each of the K δ− factors can be done independently
over the distribution of the Gaussian variable V ′i (u) with the variance [V ′i (u)]2 =
−R′′(0). The corresponding Gaussian integral yields the constant Jacobian factor
|det

(
m2 IK − κ∆

)
|−1 finally implying that

Ntot =
|det((m2/κ) δij−∆ij+Ui δij)|
|det((m2/κ) δij−∆ij)| ,

where the averaging goes over the set of i.i.d. mean-zero Gaussian random variables
Uj ≡ V ′′j (uj)/κwith the covariance structure 〈UiUj〉 = 2D δij, where the parameter

D = R′′′′(0)
2κ2 = 1

2L3
c
, measures the strength of the disorder in the problem, and is

directly related to the Larkin length at m = 0.



Evaluating determinants via Gelfand-Yaglom formula:

Israel Gelfand (1913-2009) and Akiva Yaglom (1921-2007)

Related determinants of 1D Schroedinger operators to solving an initial value
problem.



Counting equilibria via functional Kac-Rice and Gelfand-Yaglom formulae:

N (L) =

∫ ∣∣∣∣det
δ2H
δuδu′

∣∣∣∣ δ(δHδu
)
Du =

|det (m2I + κH)|
det (m2I + κH0)

where H is a random Schrödinger operator with the ’white-noise’ potential:

H = − d2

dτ2 + U(τ), U(τ1)U(τ2) = 2Dδ(τ1 − τ2)

with D = R′′′′(0)
2κ2 ≡ 1

2L3
c

and H0 = − d2

dτ2 .

Gelfand-Yaglom:
Consider y(τ) to be the solution of an Initial Value Problem:

Hy = −m
2

κ y, y(0) = 0, y′(0) = 1

Then N (L) = |y(L)|
y0(L)

where y0(τ) is the solution of a similar IVP for H0.

As is well-known, such IVP is characterized by an exponential growth of the solution
in every realization, characterized by the Lyapunov exponent:

γ1 = limL→∞
1
L ln |y(L)| > 0



Statistics of |y(L)|:

Although the Lyapunov exponent is non-random (self-averaging) as L → ∞, the
fluctuations of |y(L)| for L � 1 are extremely strong, and characterized by the
Large Deviation type of expression:

|y(L)|q ∼ expLΛ(q), Λ(q) := limL→∞
1
L ln |y(L)|q =

∑∞
n=1

γn
n!q

n

We need Λ(1) as r = Λ(1) − 1/Lm. We compute it by mapping the Sch.Eq. to a
stochastic differential equation for the Ricatti variable z(τ) = [y(τ)]−1dy

dτ , so that

dz

dτ
= m2/κ− z2 + U(τ), U(τ1)U(τ2) = 2Dδ(τ1 − τ2)

and

|y(L)|q = exp
(
q
∫ L

0
z(t)dt

)
The probability density P(z, τ) satisfies the Fokker-Planck-Kolmogorov eqn:

∂
∂tP = ŜP, Ŝ := d

dz

(
m2/κ− z2 +D d

dz

)
and one can show that

|y(L)|q =
∫
< z|eL(Ŝ+qz)|∞ > dz

The largest eigenvalue of L = Ŝ + qz gives Λ(q).



Elastic d-manifolds in random media of N+d dimensions.:

H(u1, . . . ,uK) =
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Part II. Hessians for manifolds in random media:
The manifold is parameterized by aN -component real displacement field u(x) ∈ RN
where x ∈ Ld ⊂ Zd, with the energy functional

H[u] =
∑
x,y u(x) · (µ1− t∆)xy · u(y) +

∑
x V (u(x), x)

where t > 0, and ∆ is the discrete Laplacian in the hypercube Ld with periodic
boundary conditions, eigenmodes ∼ eikx and eigenvalues ∆(k) (e.g. in d = 1,
∆(k) = 2(cos k − 1) with k = 2πn/L, n = 0, ..L − 1). We will eventually consider
the limit of the continuum manifold with the standard Laplacian ∆ =

∑d
i=1

∂2

∂x2
i

whose

spectrum is given by ∆(k) = −k2.

The potential V (u, x) is Gaussian-distributed random potential in RN×Zd with mean
zero and covariance

V (u1, x1)V (u2, x2) = N B
(

(u1−u2)2

N

)
δd(x1 − x2),

such that potential values are uncorrelated for different points in the internal space,
but correlated for different displacements.

As usual, µ acts as a “mass" which, for the continuum model, leads to reducing the fluctuations

beyond the scale Lµ =
√
t/µ.

We will only consider the mean-field type limit: N � 1.



Manifold Hessian, discrete lattice:

Our first goal will be to study the mean eigenvalue density ρ(λ) for NLd × NLd

Hessian matrix

Kix,jy[u] = ∂2

∂ui(x)∂uj(y)H[u] = δij(µ1− t∆)xy + δxy
∂2

∂ui∂uj
V (u(x), x)

of the pinned elastic manifold. An important feature of such matrix is its (periodic)
block-band structure visualized below for d = 1:

X
(1)
N −t1N 0 . . . 0 −t1N

−t1N X
(2)
N −t1N 0 . . . 0

0 −t1N X
(3)
N −t1N 0 . . .

. . . 0 −t1N . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0

0 . . . 0 −t1N X
(L−1)
N −t1N

−t1N 0 . . . 0 −t1N X
(L)
N


where we introduced N ×N diagonal blocks

X
(r)
N := (µ+ 2t)1N + W(r), r = 1, . . . , L

containing random matrices with entries

W
(r)
ij = ∂2

∂ui∂uj
V (u(x), x)

∣∣
x=xr



Manifold Hessian, statistics:

If the Hessian is chosen at a generic point in configuration space, i.e. at an arbitrary
fixed u(x) the statistical translational invariance of the random potential implies the
Hessian matrix is statistically independent of the choice of u(x), i.e. we may as well
chose it at u(x) = 0. The covariance structure of the random potential further implies
that entries of the matrices W(r) are mean-zero Gaussian-distributed, independent
for different r and have the following covariance structure:

W
(r)
ij W

(s)
kl = δrs

4
NB

′′(0) (δijδlk + δikδjl + δilδjk)

The matrices of such block-band type, with W(r) in diagonal blocks replaced with
GOE matrices with i.i.d. entries, were introduced by Franz Wegner in his famous
studies of the Anderson localization, and are now known by the general name of
Wegner orbital models.

Philip Anderson Franz Wegner



Manifold Hessian in the continuum:
In the case of a continuous manifold the Hessian matrix K becomes a matrix-
valued differential operator K acting in the space of N−component vectors
f(x) := (f1(x), . . . , fN(x))

T where, e.g. x ∈ [0, L]d, by the following rule:
Kf = (µ1− t∆)f + Ŵ f , Wi,j(x) = ∂2

∂ui∂uj
V (u(x), x)

with appropriate boundary conditions. In particular, for d = 1 the operator K can be
visualized in the following form of an N ×N matrix:
−t d

2

dx2 + µ+W1,1(x) W1,2(x) . . . W1,N(x)

W1,2(x) −t d
2

dx2 + µ+W2,2(x) . . . W2,N(x)

. . . . . . . . . . . .

. . . . . . . . . . . .

W1,N(x) . . . WN,N−1(x) −t d
2

dx2 + µ+WN,N(x)


where

Wi,j(x1)Wk,l(x2) = δ(x1 − x2) 4
NB
′′(0) (δijδlk + δikδjl + δilδjk)

Models of such type are sometimes called the matrix Anderson models.

We will show that the associated profiles of the mean eigenvalue density for such
problem can be explicitly found as long as L→∞ after N →∞.



Manifold Hessian’s resolvent:

Leonid Pastur

Our main object of interest will be the disorder-averaged resolvent (Green’s function)
of the Hessian, calculated at the global minimal energy configuration u0 ≡ u0(x).:

G(x, y;λ,u0) = 1
N

∑N
i=1

(
1

λ−K(u0)

)
xi,yi

Employing the replica trick, we first show that for N → ∞ (the limit being taken for
a fixed value of Ld) the average Green’s function is given by

G(x, y;λ,u0) =
∫
k

eik(x−y)

λ−µeff+t∆(k)−4ipB′′(0)

where the value of the parameter p is determined by the following self-consistent
’deformed semicircle’/Pastur equation for the diagonal part

G(x, x;λ,u0) = ip =
∫
k

1
λ−µeff+t∆(k)−4ipB′′(0)

which is essentially of the same form as one for the orbital model with lattice
Laplacian (Khorunzhii & Pastur ’93).
The only quantity which contains all the information about the optimization leading to the ground state

u0 is the parameter µeff . Below µeff will be calculated in the various cases (replica-symmetric, 1RSB

and FRSB) in the framework of the replica theory.



Addressing the global minimum via Statistical Mechanics:

J W Gibbs (1839–1903)

Given the energy function(al) H[u] associated with a manifold configuration u(x)
we introduce the inverse temperature parameter β > 0, and define the partition
function of the model as the (functional) integral

Zβ =
∫
e−βH[u]Du.

We further define the (Boltzmann-)Gibbs weights πβ[u(x)] = Z−1
β e−βH[u]

associated with any manifold configuration u(x) and define the thermal averaged
value of any functional g[u] as 〈g[u]〉β :=

∫
g[u]πβ[u]Du.

In the zero-temperature limit β → ∞ the Gibbs weights concentrate on the set of
configurations delivering the global minimum u0(x) = Argmin {H[u(x)]} so that for
any well-behaving functional

limβ→∞〈g[u]〉β = g(u0).

Although this fact is valid in every disorder realization, in practice one concentrates
on finding the disorder-averaged values 〈g(u)〉β. In particular, in this talk we choose
the function g(u) as the resolvent of the Hessian.



Spectral Density of the Hessian at a generic point:

With setting µeff = µ the above expressions provides the mean resolvent and the
mean spectral density ρ(λ) for the manifold Hessian around a generic point of the
disordered landscape.

Its generic feature is the square-root singularity at the spectral edges, which is thus
a universal characteristics of the mean-field type spectral densities for disordered
elastic systems of any dimension d. The shape as a whole is not universal and
essentially depends on the dimension and the type of the Laplacian matrix (discrete
or continuous). Interestingly, it turns out to be possible to find explicitly the spectral
density for the 1D matrix Anderson model of infinite length L→∞ and the Laplacian
spectrum −∆(k) = k2, −∞ < k <∞:

ρ(λ) = 1
2π(t B′′(0))1/3 rc

(
Λ = t1/3 λ−µ

3B′′(0)2/3

)
, rc(Λ) =

w2
r

4

√(
2
wr

)3

− 1

where

wr =
[
1 +
√

1 + Λ3
]1/3

+
[
1−
√

1 + Λ3
]1/3

,
The parameter free scaling function rc(Λ) is plotted below.



Spectral Density of the Hessian in 1D continuum case:

-1 1 2 3 4 5

0.2

0.4

0.6

Scaling function rc(Λ) for the Hessian spectral density for the d = 1 continuum
model plotted versus Λ = t1/3 λ−µeff

3B′′(0)2/3 . The spectral edge Λe is given in this case

by Λe = −1. The function rc(Λ) reaches its maximum at Λ = 0 and then decays at
Λ� 1 as rc(Λ� 1) ∼ 1√

3Λ
. The latter regime corresponds to the spectral density

ρ(λ) = 1
2π

1√
t(λ−µ)

of the disorder-free operator µ− d2

dx2 with the spectrum

λ = µ+ tk2.



Spectral Density of the Hessian in 1D discrete lattice:
For 1D elastic discrete chain with Laplacian spectrum−∆(k) = 2(1− cos k), 0 ≤ k ≤ 2π

the shape of the spectral density for the associated disordered banded Hessian can be shown
to be of the form

ρ(λ) = t
2πB′′(0)r

(
Λ = λ−µ

2t , y
)
, y = t2

B′′(0)

but the function r(Λ, y) does not have a simple form, apart from the case of weak disorder
y � 1.

-1 1 2 3

0.05

0.10

0.15

Blue: scaling function for the Hessian spectral density, r(Λ, y) versus Λ = λ−µ
2t for

y = t2

B′′(0)
= 10 (weak disorder). In the weak disorder limit, the central part converges to the

spectral density without disorder (indicated here in orange). The graph r(Λ, y) has two spectral

edges at Λ(−)
e = −3

2y
−2/3 and Λ(+)

e = 2 + 3
2y
−2/3, and the two parts around the edges

converge, upon rescaling, to the density for the continuum model.



Hessian spectrum at global energy minimum: Larkin mass and RS phase:

The most important parameter in the theory is the "Larkin mass" µc > 0 which
controls the value of the parabolic confinement µ below which the replica symmetry
breaking (RSB) occurs at T = 0. Its value turns out to be given by the positive
solution of

1 = 4B′′(0)
∫
k

1
(−t∆(k)+µc)2

which is controlled both by disorder strength and the elasticity matrix. For example,

for 1D continuous system a simple calculation gives µc =
(
B′′(0)√

t

)2/3

.

Our analysis shows that in the replica symmetric phase

µeff = µ+ 4B′′(0)
∫
k

1
µ−t∆(k)

and the lower spectral edge λ
(−)
e of the Hessian (which we associate with the

spectral gap) as a function of µ is given by

λ
(−)
e = µ− µc + 4B′′(0)

∫
k

[
1

µ−t∆(k) −
∫
k

1
µc−t∆(k)

]
This formula immediately shows that for µ > µc the Hessian spectrum is always
gapped (from zero). Upon expanding for µ → µc one immediately finds the gap
vanishing quadratically at µc.



Hessian spectrum at the point of global energy minimum, FRSB:
We consider random Gaussian potentials with the power-law class covariance
function B(q) = g2(c + q)−(γ−1), γ > 0, which also includes the (i) exponential
B(q) = g2e−Cq as the limit γ → +∞, and (ii) the log-correlated case for γ → 1,
when B(0)−B(q) = g2 ln (1 + q

ε), where g and ε > 0 are given constants. We also
consider only the manifolds of dimenions 0 ≤ d < 4 and N →∞.
As found in Mezard and Parisi ’92 for µ < µc, full replica symmetry breaking, FRSB,
always occurs for manifold of dimensions 2 < d < 4, whereas for 0 ≤ d < 2 FRSB
occurs whenever 0 < γ < 2

2−d.

Our analysis shows that in the full replica symmetry broken phase the parameter
µeff freezes to µ-independent value:

µeff = µc + 4B′′(0)
∫
k

1
µc−t∆(k), ∀µ < µc

and the lower spectral edge freezes at zero: λ(−)
e ≡ 0, µ < µc.

Thus, the Hessian at the global minimum in the Parisi-FRSB
phase of the pinned manifoiold is always gapless.

Giorgio Parisi



Hessian spectrum at the point of global energy minimum, 1-RSB:

In constrast, for N → ∞ manifolds with d < 2 and γ > 2
2−d the 1-step replica

symmetry breaking occurs. In that case we find that the gap vanishes as (µc − µ)4

near the transition from below, with the super-universal exponent. For example, for
the continuum model in dimension d we get for µ = µc(1− δ)

λ
(−)
e = µc

36B(3)(0)4

(
4−d

4

)3 (
B(4)(0)B′′(0)− 2(3−d)

4−d B(3)(0)2
)2

δ4 +O
(
δ5
)

Special marginal cases share the properties of both FRSB and 1-RSB. For
continuous manifolds those are :

(i) γ = 1 for d=0: B(0)−B(q) = g2 ln (1 + q
ε)

(ii) γ = 0 for d=1: B(q) = g2

C+q

(iii) γ =∞ for d=2: B(q) = g2e−Cq

In particular, the 1-RSB Parisi equations in all those cases can be exactly and
explicitly solved, and the Hessian at the global minimum proves to be gapless for
all curvatures below the Larkin mass.



Complexity, Larkin Length, and Depinning Threshold for N � 1:

(i). As N →∞ for a given Ld we can count all equilibria of the energy function(al)
defined as solutions of δH[u(τ)]

δu = 0. We also can count separately all stable
equilibria i.e. local minima. The numbersN (L) of all equilibria/minima are random,
and we show the mean values behave asymptotically as

N (L, µ) ∼ eNL
dΣtot(µ), Nm(L, µ) ∼ eNL

dΣst(µ)

where the complexity Σst(µ) for minima is zero for µ > µc whereas for µ < µc given
in terms of the Larkin mass µc as

Σst(µ) = −1
2

[(
µc − µ+

∫
k

1
µc−t∆(k)

)2

−
(∫

k
1

µc−t∆(k)

)2

−
∫
k

ln µ−t∆(k)
µc−t∆(k)

]
(ii) From this one can show that Σst(µ → µc − 0) ∼ (µ − µc)

3 confirming the
third order nature of the spinglass-type transitions. Such calculation also allows to
naturally define the Larkin length so that N (L, µ→ 0) ∼ eN (L/Lc)

d
giving Lc =

[Σst(0)]
−1
d . After some calculation in the case of weak disorder t � 1 one gets the

relation:

Lc ∼
(

t2

B′′(0)

) 1
4−d

which nicely agrees with earlier estimates in the literature.



(iii) Finally, we can also include a (uniform) force f(τ) = f along a direction u1 and
show that the depinning threshold for N =∞ model is given by

fst =
√

4B′(0)L
−d/2
c

Moreover, as long as the underlying system is of 1-RSB nature we argue that this
value is actually exact, i.e. valid for a typical disorder realizations.



(iii) Finally, we can also include a (uniform) force f(τ) = f along a direction u1 and
show that the depinning threshold for N =∞ model is given by

fst =
√

4B′(0)L
−d/2
c

Moreover, as long as the underlying system is of 1-RSB nature we argue that this
value is actually exact, i.e. valid for a typical disorder realizations.

THANK YOU!


