A Josephson relation for e/3 and e/5 fractionally charged with anyons

@ NanoElectronics Group, CEA Saclay spec **OPEN POSITION** for 18-24 months Post-doct. (urgent)

OUTLINE

- Quantum Hall edge states and Fractional Quantum Hall Effect
- PHOTON-ASSISTED TRANSPORT
 - Photon-assisted processes
 - A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN)
- Experimental Results
 - e*=e/3
 - e*=e/5
- CONCLUSION and PERSPECTIVES

X. G. Wen (1991)

Quantum Hall Effect (QHE)

Integer Quantum Hall Effect (IQHE)

 $R_{hall} = (h/e^2)1/v \quad v=1,2,3, ...$

$$R_{Hall} = \frac{B}{e n_s} = \frac{h}{e^2} \frac{1}{(v=k)}$$

QHE and EDGE STATES

Integer Quantum Hall Effect (IQHE)

 $R_{hall} = (h/e^2)1/v \quad v = 1, 2, 3, ...$

Fractional Quantum Hall Effect (FQHE)

 $R_{hall} = (h/e^2) 1/v \quad v = 1/3, 2/5, 3/7, ... 2/3, 3/5, 4/7, ...$

1/3

30

DC SHOT NOISE: Integer QHE

Tunneling through a v=2/5 Jain FQHE state

J. K. Jain Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199-202 (1989)

OUTLINE

- Quantum Hall edge states and Fractional Quantum Hall Effect
- PHOTON-ASSISTED TRANSPORT
 - Photon-assisted processes
 - A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN)
- Experimental Results
 - e*=e/3
 - e*=e/5
- CONCLUSION and PERSPECTIVES

X. G. Wen (1991)

DC Bias transport (weak coupling)

Photon-Assisted transport (weak coupling)

Photon-Assisted Shot Noise (PASN)

Photon-Assisted Shot Noise (PASN)

Photon-Assisted Shot Noise (PASN)

 $V(t)=V_{dc} + V_{ac}\cos(2\pi f t)$

- p_l: photo-absorption probability amplitude
- μ_L shifted by $\mu_L \rightarrow \mu_L$ +1 hf with probability $|p_l|^2$

 $|p_0|^2 + |p_1|^2 + |p_{-1}|^2 + \dots = 1$

$$\begin{aligned} \mathbf{S_{I}^{PASN}} &= |\mathbf{p}_{0}|^{2} \mathbf{S_{I}^{DC}}(V_{dc}) + |\mathbf{p}_{1}|^{2} \mathbf{S_{I}^{DC}}(V_{dc} + hf/e^{*}) + \\ |\mathbf{p}_{-1}|^{2} \mathbf{S_{I}^{DC}}(V_{dc} - hf/e^{*}) + \dots \end{aligned}$$

OUTLINE

- Quantum Hall edge states and Fractional Quantum Hall Effect
- PHOTON-ASSISTED TRANSPORT
 - Photon-assisted processes
 - A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN)

X. G. Wen (1991)

- Experimental Results
 - e*=e/3
 - e*=e/5
- CONCLUSION and PERSPECTIVES

Experimental Set-up and samples

Samples: $n_s = 1.07 \ 10^{11} \ cm^{-2} \ \mu = 3 \ 10^6 \ cm^2 V^{-1} s^{-1}$ (from I. Farrer, D. Ritchie, Cambridge UK)

⁵mm

Experimental Set-up and samples

Helium-free Cryoconcept® crysostat

14 Tesla Dry Magnet13mK base temperature

DC Shot noise for the 1/3-FQHE state

Photon-Assisted Shot Noise for the 1/3-FQHE state

Photon-Assisted Shot Noise for the 1/3-FQHE state

Photon-Assisted Shot Noise for the 1/3-FQHE state

f=22GHz

400

Killing the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN} (V_{dc}) - |p_{0}|^{2} S_{I}^{DC} (V_{dc})$$

= $|p_{1}|^{2} \left[S_{I}^{DC} (V_{dc} - hf / e^{*}) + S_{I}^{DC} (V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{dc}|$ range provides a determination of $|p_0|^2$

WHY a FLAT VARIATION?

Killing the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - |p_{0}|^{2} S_{I}^{DC}(V_{dc})$$

= $|p_{1}|^{2} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{\text{dc}}|$ range provides a determination of $|p_0|^2$

as $|p_0|^2\,\textbf{+}2|p_1|^2\approx \textbf{1}$ this gives $|p_1|^2$

Killing the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN} (V_{dc}) - |p_{0}|^{2} S_{I}^{DC} (V_{dc})$$

= $|p_{1}|^{2} \left[S_{I}^{DC} (V_{dc} - hf / e^{*}) + S_{I}^{DC} (V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{\text{dc}}|$ range provides a determination of $|p_0|^2$

as $|p_0|^2 + 2|p_1|^2 \approx 1$ this gives $|p_1|^2$

____comparison using $f_{Josephson} = e^*V_{dc}/h$ with $e^* = e/3$

Josephson relation for the 1/3-FQHE state

CHECKING the FREQUENCY DEPENDENCE of Excess PASN:

 $\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - |p_{0}|^{2} S_{I}^{DC}(V_{dc})$ = $|p_{1}|^{2} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

threshold voltage : $V_J = hf/e^*$ scales with frequency!

New Measurement of e* for the 1/3-FQHE State

MEASURING e* from Excess PASN:

 $\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - |p_{0}|^{2} S_{I}^{DC}(V_{dc})$ = $|p_{1}|^{2} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

threshold voltage : $V_J = hf/e^*$ scales with frequency!

Best fit of data with e* free parameter

OUTLINE

- Quantum Hall edge states and Fractional Quantum Hall Effect
- PHOTON-ASSISTED TRANSPORT
 - Photon-assisted processes
 - A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN)

X. G. Wen (1991)

- Experimental Results
 - e*=e/3
 - e*=e/5
- CONCLUSION and PERSPECTIVES

DC Shot noise for the 2/5-FQHE state

$$S_{I}^{DC} = 2e * I_{B} \left[\operatorname{coth} \left(\frac{e * V_{dc}}{2k_{B}T} \right) - \frac{2k_{B}T}{e * V_{dc}} \right] \propto - \langle \Delta I_{B} \Delta I_{t} \rangle$$

e*= e/5 !

confirms Weizmann results (Reznikov 1999) on 2/5

Photon-Assisted Shot Noise for the 2/5-FQHE state

f=17GHz

 $V(t) = V_{dc} + V_{ac} \cos(2\pi f t)$

 $V_{ac} \approx 300 \,\mu\text{V}$ for -58dBm

 $\approx 400 \ \mu V$ for -55dBm

Killing again the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - |p_{0}|^{2} S_{I}^{DC}(V_{dc})$$

= $|p_{1}|^{2} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{\text{dc}}|$ range provides a determination of $|p_0|^2$

Killing again the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - |p_{0}|^{2} S_{I}^{DC}(V_{dc})$$

= $|p_{1}|^{2} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{\text{dc}}|$ range provides a determination of $|p_0|^2$

as $|p_0|^2 + 2|p_1|^2 \approx 1$ this gives $|p_1|^2$

comparison using f_{Josephson}=e*V_{dc}/h with e*=e/5

Josephson relation for the 2/5-FQHE state

CHECKING the FREQUENCY DEPENDENCE of Excess PASN:

 $\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - |p_{0}|^{2} S_{I}^{DC}(V_{dc})$ = $|p_{1}|^{2} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

threshold voltage : $V_J = hf/e^*$ scales with frequency!

New Measurement of e* for the 2/5-FQHE State

MEASURING e* from Excess PASN:

 $\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - |p_{0}|^{2} S_{I}^{DC}(V_{dc})$ = $|p_{1}|^{2} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

threshold voltage : $V_J = hf/e^*$ scales with frequency!

Best fit of data with e* free parameter

CONCLUSION

- FQHE e*=e/3 and e/5 abelian *anyons can be manipulated* with microwave by well-defined photon-assisted processes. What about e/4 in non-abelian 5/2 FQHE state?
- Validates the possibility to realize on-demand single anyon sources for time domain *anyon braiding*.
- Based on Photon-Assisted Shot Noise (PASN)
- Shows evidence of the Josephson relation e*V/h=f predicted in 1991 by X.G. Wen*

Sine wave single charge pulses

e

1e⁻ 1e⁻ ...

time

e

 $eV_{ac} = hv$ $eV_{dc} = hv$

*predicted for the current, see also
I. Safi +Sukhorukov (2010).

ACKNOWLEDGEMENTS

OPEN POSITION for 18-24 months Post-doct. (urgent)

X. Waintal H. Saleur I Safi Th. Martin

M. Freedman

All members of Nanoelectronics Group at Saclay The cryogeny Team

ANR FullyQuantum AAP CE30

The Josephson Frequency of fractionally charge anyons M. Kapfer, P. Roulleau, I. Farrer, D. A. Ritchie, and D. C. Glattli, arXiv:1806.03117, Published 24 January 2019 on *Science* **DOI: 10.1126/science.aau3539**

Levitons : J. Dubois et al, Nature 502, 659 (2013) T. Jullien et al., Nature 514, 603 (2014)

PERSPECTIVE : ANYONS on DEMAND

A Time Controlled Poissonian Source of Anyon

IDEA: Weak backscattering beaks the leviton into e/3, 2e/3 quasiparticles.

- leviton (e) 2e/3)V(t) v=1/3 FQHE /=1/3 FQHE i e/3 state state Lorentzian pulse QPC [-- Λ (WB) anyon (e/3)
- Anyons inherit from the time properties of Levitons
- Non-deterministic: Poissonian source

PERSPECTIVE : ANYON BRAIDING INTERFERENCE

Braiding Anyons

1) Unveiling the anyon statistical angle with Hong Ou Mandel braiding interference

